参考答案
算法简介
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
算法描述
具体算法描述如下:
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
代码实现
/*方法说明:堆排序 @param array 待排序数组*/ function heapSort(array) { console.time('堆排序耗时'); if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') { //建堆 var heapSize = array.length, temp; for (var i = Math.floor(heapSize / 2) - 1; i >= 0; i--) { heapify(array, i, heapSize); } //堆排序 for (var j = heapSize - 1; j >= 1; j--) { temp = array[0]; array[0] = array[j]; array[j] = temp; heapify(array, 0, --heapSize); } console.timeEnd('堆排序耗时'); return array; } else { return 'array is not an Array!'; } } /*方法说明:维护堆的性质 @param arr 数组 @param x 数组下标 @param len 堆大小*/ function heapify(arr, x, len) { if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') { var l = 2 * x + 1, r = 2 * x + 2, largest = x, temp; if (l < len && arr[l] > arr[largest]) { largest = l; } if (r < len && arr[r] > arr[largest]) { largest = r; } if (largest != x) { temp = arr[x]; arr[x] = arr[largest]; arr[largest] = temp; heapify(arr, largest, len); } } else { return 'arr is not an Array or x is not a number!'; } } var arr=[91,60,96,13,35,65,46,65,10,30,20,31,77,81,22]; console.log(heapSort(arr));//[10, 13, 20, 22, 30, 31, 35, 46, 60, 65, 65, 77, 81, 91, 96]
算法分析
- 最佳情况:T(n) = O(nlogn)
- 最差情况:T(n) = O(nlogn)
- 平均情况:T(n) = O(nlogn)
正文结束
Ctrl + Enter