一、是什么

在计算机科学中,图是一种抽象的数据类型,在图中的数据元素通常称为结点,V是所有顶点的集合,E是所有边的集合

如果两个顶点v,w,只能由vw,而不能由wv,那么我们就把这种情况叫做一个从 vw 的有向边。v也被称做初始点,w也被称为终点。这种图就被称做有向图

如果vw是没有顺序的,从v到达w和从w到达v是完全相同的,这种图就被称为无向图

图的结构比较复杂,任意两个顶点之间都可能存在联系,因此无法以数据元素在存储区中的物理位置来表示元素之间的关系

常见表达图的方式有如下:

  • 邻接矩阵

  • 邻接表

邻接矩阵

通过使用一个二维数组G[N][N]进行表示N个点到N-1编号,通过邻接矩阵可以立刻看出两顶点之间是否存在一条边,只需要检查邻接矩阵行i和列j是否是非零值,对于无向图,邻接矩阵是对称的

邻接表

存储方式如下图所示:

javascript中,可以使用Object进行表示,如下:

const graph = { A: [2, 3, 5], B: [2], C: [0, 1, 3], D: [0, 2], E: [6], F: [0, 6], G: [4, 5] }

图的数据结构还可能包含和每条边相关联的数值(edge value),例如一个标号或一个数值(即权重,weight;表示花费、容量、长度等)

二、操作

关于的图的操作常见的有:

  • 深度优先遍历
  • 广度优先遍历

首先构建一个图的邻接矩阵表示,如下面的图:

用代码表示则如下:

const graph = { 0: [1, 4], 1: [2, 4], 2: [2, 3], 3: [], 4: [3], }

深度优先遍历

也就是尽可能的往深处的搜索图的分支

实现思路是,首先应该确定一个根节点,然后对根节点的没访问过的相邻节点进行深度优先遍历

确定以 0 为根节点,然后进行深度遍历,然后遍历1,接着遍历 2,然后3,此时完成一条分支0 - 1- 2- 3的遍历,换一条分支,也就是4,4后面因为3已经遍历过了,所以就不访问了

用代码表示则如下:

const visited = new Set() const dfs = (n) => { console.log(n) visited.add(n) // 访问过添加记录 graph[n].forEach(c => { if(!visited.has(c)){ // 判断是否访问呢过 dfs(c) } }) }

广度优先遍历

先访问离根节点最近的节点,然后进行入队操作,解决思路如下:

  • 新建一个队列,把根节点入队
  • 把队头出队并访问
  • 把队头的没访问过的相邻节点入队
  • 重复二、三步骤,知道队列为空

用代码标识则如下:

const visited = new Set() const dfs = (n) => { visited.add(n) const q = [n] while(q.length){ const n = q.shift() console.log(n) graph[n].forEach(c => { if(!visited.has(c)){ q.push(c) visited.add(c) } }) } }

三、总结

通过上面的初步了解,可以看到图就是由顶点的有穷非空集合和顶点之间的边组成的集合,分成了无向图与有向图

图的表达形式可以分成邻接矩阵和邻接表两种形式,在javascript中,则可以通过二维数组和对象的形式进行表达

图实际是很复杂的,后续还可以延伸出无向图和带权图,对应如下图所示:

参考文献

  • https://zh.wikipedia.org/wiki/%E5%9B%BE_(%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84)
  • https://www.kancloud.cn/imnotdown1019/java_core_full/2159607